A Phragmén - Lindelöf principle for slice regular functions
نویسندگان
چکیده
منابع مشابه
A Phragmén - Lindelöf principle for slice regular functions
The celebrated 100-year old Phragmén-Lindelöf theorem, [15, 16], is a far reaching extension of the maximum modulus theorem for holomorphic functions that in its simplest form can be stated as follows: Theorem 1.1. Let Ω ⊂ C be a simply connected domain whose boundary contains the point at infinity. If f is a bounded holomorphic function on Ω and lim supz→z0 |f(z)| ≤ M at each finite boundary p...
متن کاملA Cauchy kernel for slice regular functions
In this paper we show how to construct a regular, non commutative Cauchy kernel for slice regular quaternionic functions. We prove an (algebraic) representation formula for such functions, which leads to a new Cauchy formula. We find the expression of the derivatives of a regular function in terms of the powers of the Cauchy kernel, and we present several other consequent results. AMS Classific...
متن کاملExtension results for slice regular functions of a quaternionic variable
In this paper we prove a new representation formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + yI can be recovered by the values of f at the points q + yJ and q + yK for any choice of imaginary units I, J,K. This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a...
متن کاملThe algebraic surfaces on which the classical Phragmén - Lindelöf theorem holds
Let V be an algebraic variety in Cn . We say that V satisfies the strong Phragmén-Lindelöf property (SPL) or that the classical Phragmén-Lindelöf Theorem holds on V if the following is true: There exists a positive constant A such that each plurisubharmonic function u on V which is bounded above by |z| + o(|z|) on V and by 0 on the real points in V already is bounded by A| Im z|. For algebraic ...
متن کاملphragmén-lindelöf type results for a class of nonlinear damped wave equations
this paper deals with the behavior at infinity of solutions to a class of wave equations with nonlinear dampingterms defined in a semi-infinite cylinder. the spatial behavior of solutions is studied and an alternative ofphragmén-lindelöf type theorems is obtained in the results. the main point in the contribution is the use of energy method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2011
ISSN: 1370-1444
DOI: 10.36045/bbms/1320763135